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Abstract. An important characteristic of the Multi-objective Optimiza-
tion Problems (MOPs) is that their solution sets typically form a (k−1)-
dimensional object where k is the number of objectives involved in the
MOP. Thus, it is only possible to approximate the entire set of interest
for a relatively few numbers of objectives (say, k = 3 or 4). In this
work, we address the numerical treatment of MOPs with more than four
objectives which are termed as Many Objective Optimization Problems
(MaOPs). Such problems have recently caught the interest in the indus-
try as the decision-making processes are getting more and more complex.
The recently proposed Pareto Explorer (PE) method raises as a solution
for the MaOPs, it is conceived as a global/local exploration tool which
consists of two principal phases: obtaining a global optimal solution for
a given MaOP, and the local exploration of optimal solutions based on
the preferences of a decision-maker. In this work, we demonstrate the
effectiveness of PE for solving real-world applications.

Keywords: many objective optimization, interactive method, decision
making, continuation method.

1 Introduction

In many applications, several objectives have to be optimized concurrently lead-
ing to a multi-objective optimization problem (MOP). Due to the increasing
complexity of practical problems, decision-making processes are getting more
and more sophisticated. Motivated by the advances in the design of algorithms
for the numerical treatment of MOPs [13] with few objectives and their huge
success in applications, there is a recent trend to include more objectives into the
optimization process. Due to this reason, MOPs with more than four objectives
are often termed many objective problems (MaOPs) in the literature as they re-
quire a different numerical treatment than problems with two to four objectives.

However, there exist real-world problems where the decision-maker (DM) has
some knowledge about the problem or she/he wants to obtain optimal solutions
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with specific characteristics instead of a vast set of alternatives. Reference point
methods are useful for this scenario, where the idea is to get the closest solution
to a given vector, usually infeasible, which is a guess of the DM. This kind of
methods, where the DM has active participation in the solution process, are
called interactive methods, and they differ from each other according to what
type of information they ask the DM [10].

We can find different alternatives which consider only one reference point to
get a solution, some of them include reference point method [17], light beam
search [8], GUESS [3], and even the r-NSGA-II [4], which can work with a set
of points. On the other hand, the learning-oriented methods (a different class of
interactive methods), exploit the preferences of the DM to direct the search, and
reduce the number of solutions to consider. Such methods are useful when the
set of optimal solutions is huge, for example, for many-objective optimization
problems. A wide variety of these interactive methods have been developed [2],
for example, Pareto Navigator [5], NIMBUS [12], and Nautilus [11].

Recently, continuation methods have been used to solve the multiobjec-
tive optimization problem. These methods have the advantage that they move
through the Pareto front. To achieve this, we need an initial optimal solution,
starting from this point we compute a predictor, which is a movement according
to specific criteria, and then with a corrector we obtain a new optimal solution.
The change both in the predictor as in the corrector, gives rise to different
methods as they are Hillermeier method [7], Pareto Tracer [9], and Zigzag [16].

The method used this paper, called Pareto Explorer, is a continuation method
that was recently proposed and which takes into account the preferences of the
DM to calculate the predictor. It is in spirit an interactive method and even
more. Here we show how to use PE to solve real world applications.

2 Background

A continuous multi-objective optimization problems (MOP) is mathematically
expressed as:

min
x∈D

F (x) = [f1(x), . . . , fk(x)]T , (1)

where D ⊂ Rn is the domain and F : D ⊂ Rn → Rk is called the objective
function, where k is the number of objectives and n is the number of variables.

The optimality of an MOP is defined by the concept of strict dominance. Let
v, w ∈ Rk, the vector v is less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k};
the relation ≤p is defined analogously. A vector y ∈ D is dominated by a vector
x ∈ D (x ≺ y) with respect to (1) if F (x) ≤p F (y) and F (x) 6= F (y), else y is
called non-dominated by x. A point x∗ ∈ Rn is Pareto optimal to (1) if there
is no y ∈ D that dominates x. The set of all the Pareto optimal points PD is
called the Pareto set and its image F (PD) is called the Pareto front. Typically,
i.e., under certain mild smoothness assumption on the model, both Pareto set
and front form at least locally (k − 1)-dimensional objects.
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2.1 Pareto Tracer

Here we briefly state the core elements of PT for unconstrained problems, for
details including constraint handling we refer to [9].

In [7] we find a continuation method for the MOPs context by considering
F̂ : Rn+k → Rn+1:

F̂ (x, α) =

(∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
= 0. (2)

The set of KKT points of (1) is contained in the zero set of F̂ which motivates
the continuation along F̂−1(0).

The idea of Pareto Tracer [9] is to separate the decision and weight space:

F̂ ′(x, α)

(
ν
µ

)
=

(∑k
i=1 αi∇2fi(x) ∇f1(x) . . . ∇fk(x)

0 1 . . . 1

)(
ν
µ

)
. (3)

By the second equation of (3) we have that
∑k
i=1 µi = 0, and it is possible

to find a relationship between ν and µ, i.e., a relationship between the objective
space and the variable space:

νµ = −W−1α JTµ, (4)

whereWα :=
∑k
i=1 αi∇2fi(x) ∈ Rn and J = J(x) = (∇f1(x)T , . . . ,∇fk(x)T )T ∈

Rk×n. Finally, given a direction d ∈ Rk in objective space such that Jνµ = d,
this vector νµ can be obtained with the vector µd that solves:(

−JW−1α JT

1 . . . 1

)
µd =

(
d
0

)
. (5)

If the rank of J is k− 1, we can compute the set of tangent vectors via a QR
factorization of α, i.e. α = QR. Let Q2 denote the matrix formed by the last
k− 1 columns vectors of Q, this matrix is an orthonormal basis of the linearized
Pareto front at F (x).

3 Pareto Explorer

In case the number k of objective is too high, it is not possible to compute a
suitable finite size approximation of the entire solution set any more. Instead,
the Pareto Explorer [14] aims to find a solution in cooperation with the DM in
two steps:

Step 1 Compute a solution x0 of the MaOP.
Step 2 Explore the Pareto landscape around x0 via performing movements into

user specified directions.
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Step 1 can be performed via a global heuristic such as an evolutionary reference
point method. For Step 2, the above described PT has been adapted in [14] that
allows to perform best fit movement along the Pareto set/front in directions
defined in decision, objective, and weight space. The key for this is the fact that
the tangent spaces of both the Pareto set at x as well as the Pareto front at
F (x) can be computed for every regular solution x which follows by the above
discussion (computation of the predictor for PT). By doing so, Step 2 allows for
a fine-tuning of the initial solution x0 from Step 1.

Let dk ∈ Rk be a given direction, if x is a solution of (1) with its corresponding
α vector, then the best direction to move the point F (x) on the Pareto front,
according dk, is given by the orthogonal projection of dk on the linearization of
the Pareto front at the point F (x) i.e:

d = Q2Q
T
2 dk, (6)

where Q2 are the last k−1 columns of the QR factorization of α. We consider the
normalization of d, i.e. d = d/‖d‖ and we can now compute the desired vector
νd ∈ Rn such that Jνd = d using (4) and (5).

The normalization of d is useful in order to compute the step length t for the
predictor, if we want that, for two consecutive solutions, ‖F (xi)−F (xi+1)‖ ≈ τ ,
then t is given by:

t =
τ

‖Jνd‖
. (7)

The corrector is, as in the case of the Pareto Tracer, given by the Newton
method for MOPs [6].

Figure 1 shows a hypothetical example for a best fit movement along the
Pareto front from the image F (xi) at the current iterate xi. Hereby, dy ∈ Rk

denotes the desired direction in objective space specified by the DM, and d
(i)
y ∈

Rk the direction projected to the linearized Pareto front at F (xi). The projected

direction d
(i)
y is used to perform a best fit movement along the Pareto front of

the problem.

4 Applications

In this section, we illustrate the efficiency of our method via two real world
applications, the industrial laundering and the plastic injection molding (PIM).

4.1 Industrial Laundering

The laundering process is influenced by the four parameters temperature, chem-
istry (amount of cleaner), time and mechanics (speed of rotation), which is
described by Sinners’ Circle [15]. These laundries are capable of washing up
to 30 tons of laundry per day. Consequently, it is of great interest to increase
the efficiency, which is beneficial both for ecological as well as economic reasons.
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Fig. 1. Best fit direction d
(i)
y for a given direction dy in objective space for the

Pareto Explorer.

The model was generated by fitting quadratic Ansatz functions to measure-
ments. The decision variables are the temperature of the water(x1), the amount
of washing detergents (x2), the washing time (x3) and the rotating speed of the
laundry (x4). Thirteen of the objectives are related to the cleaning of specific
types of contamination, i.e., f1 tof13 represent the effectiveness on: wool grease
in cotton, wool grease in polyester, red in cotton, sebum in cotton, sebum in
polyester, curry in cotton, motor oil in cotton, petroleum in cotton, blood in
cotton, egg in cotton, starch in cotton, cocoa, and vegetable grease, respectively;
while the 14th objective is related to the negative of the cost. All parameters are
normalized with the reference point being at (0, 0, 0, 0). The degree of cleaning
varies between 0 (no cleaning) and 100 (perfect cleaning). This leads the following
model:

min
x∈R4

F (x) = [f1(x), . . . , f14(x)]T ,

s.t −1.5 ≤ xi ≤ 1.5, i = 1, 2, 4
0 ≤ x3 ≤ 1.5.

(8)

We used Pareto Explorer to solve the problem of the washing machine (for
more details see [14]). For this approach we define the direction in objective
space as dk = −e14, i.e. we want to reduce as much as possible the value of the
14th function, which is the cost function. We took as initial point the optimal
vector x0 = (1.0429, 0.8521, 1.3622, 1.5000) and f14(x0) = 9.5637. We obtained
such a point, after applying the Newton method at the vector formed by the
middle value for each variable.

In order to view more easily the obtained results, we introduce graphs which
represent optimal solutions as polygons inscribed in the unit circle. In all cases,
the center of the circle depicts the best values for each objective function. Then,
the more a solution is far to the center, the best is its value. The first objective
function is in the line which goes from the point (0, 0) to the point (1, 0), the
rest of the objective functions are set in the counter-clockwise direction.
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The result obtained by the Pareto Explorer is in Figure 2a (left), the method
did 110 iterations and we show the solution for the initial point, 27th iteration,
55th iteration, and the final result. We can see that there is a reduction of the
value for the function f14 until reach the best value. The values of f14 and the
points considered in Figure 2a are:

– x0 = (1.0429, 0.8521, 1.3622, 1.5000), f14(x0) = 9.5637,
– x27 = (1.0995,−0.5341, 1.5000, 1.5000), f14(x27) = −4.2412,
– x55 = (0.7417,−1.2346, 1.5000, 1.5000), f14(x55) = −11.6041,
– x110 = (−1.4718,−1.5000, 1.5000, 1.5000), f14(x110) = −16.5000.

4.2 Plastic Injection Molding

The parameters we consider are the melt temperature (Tmelt), the packing time
(tpack), the packing pressure (Ppack) and the cooling time (tcool). While the
seven objectives are related to the quality and productivity of the PIM process.
Cosmetic characteristics are measured by the warpage (f1) in the product,
shrinkage (f2) and sink marks (f3). Functional properties are represented by
residual stresses such as Von Mises (f4) and shear stresses (f5). Productivity
is measured by the cycle time (f6) and clamping force (f7). Commonly, only
between two and four of these objectives are considered in other works (for more
details see [1]).

As case study we use in this work the design of a particular plastic gear. The
model (obtained by a surrogate model) is the following:

min
x∈R4

F (x) = [f1(x), . . . , f7(x)]T ,

s.t 190 ≤ x1 ≤ 230,
3 ≤ x2 ≤ 5,
60 ≤ x3 ≤ 100,
8 ≤ x4 ≤ 14.

(9)

Here we consider the seven described objectives and as initial solution we
chose x0 = (210.00, 4.00, 80.00, 11.00)T . Again, it is the middle point for each
variable in the considered range. For the demonstration of Step 2 of the PE, we
use the scenario in which we want to minimize the functions f1, f5, and f6 at
the same time, i.e., the direction is dy = (−1, 0, 0, 0,−1,−1, 0)T with τ = 0.01.

We can see in Figure 2b that the functions f1 and f6 are directly in conflict,
while f5 the value depends of both functions. At the end of the optimization
process, we obtain the best value for f6 and the worst value for f1; for the case
of f5 the initial and the final values are similar, but along the steps such value
has a lot of variation. Notice that, the result for this scenario is almost the same
than the previous one.

As it can be seen, the movement has been performed according to the desired
direction. We have presented here the entire path of solutions, however, in a real
decision-making process, the DM can of course chose at any time either to accept
a computed candidate solution, or to change the direction in which the steering
has to be performed.
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Table 1. Model values (FM ) against the simulated values FS for the PIM.

Initial Configuration

x0 210.0000 4.0000 80.0000 11.0000

FS(x0) 0.2016 5.6565 9.7470 0.0717 0.8690 20.1000 11.9460

FM (x0) 0.2040 5.7271 9.7329 0.0713 0.8774 20.1000 11.8221

Final Configuration

x212 213.3452 3.3421 60.0000 9.6950

FS(x212) 0.2437 6.5210 9.1729 0.0772 1.0300 18.1371 7.9492

FM (x212) 0.2419 6.4289 9.6057 0.0770 0.9199 18.1371 11.7847
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Final

(a) Laundry Problem
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Middle
Final

(b) PIM problem

Fig. 2. Graphical results.

5 Conclusions and Future Work

In this paper, we present an overview of how to use the Pareto Explorer, a
global/local exploration tool for the effective numerical treatment of many ob-
jective optimization problems, to solve real world applications in the context of
the decision-making process. We use it because it is not possible to compute
a suitable finite size approximation of the entire Pareto set/front for problems
with many objectives. Instead, solutions are computed and presented to the DM
in a two stage approach, where he/she express the preferences as a direction
in objective space. We demonstrated the effectiveness and usefulness of this
method with two real-world applications. The use of applications is essential in
the context of interactive methods because making fair comparisons is not always
possible, due to the fact that each process requires different pieces of information.
Moreover, comparisons of the PE against other continuation methods is unfair,
as they try to approximate all the set of optimal solutions.

35

Pareto Explorer for Solving Real World Applications

Research in Computing Science 149(3), 2020ISSN 1870-4069



However, the applicability of PE is restricted to continuous MaOPs. As future
work, the adaptation of PE for problems with different smoothness assumptions
can be explored.
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